
ID# 6025
TRAFFIC CAPACITY TESTING A WEB ENVIRONMENT

WITH TRANSACTION BASED TOOLS

James F Brady
Capacity Planner for the State of Nevada

jfbrady@doit.nv.gov

A common server configuration that has emerged for supporting Web based
applications is the Web Server, Application Server, and Database Server
arrangement. This paper discusses a specific traffic capacity testing
experience with this server combination for a Windows® environment using a
transaction oriented load generator instead of a traditional virtual user script
based tool. Both challenges encountered and insights gained are described.

1. Introduction
Often requirements dictate that a transaction based
application be capacity tested before it is released into
production using some type of traffic generation
mechanism that simulates customer requests to a
target system. A common server configuration that has
emerged for supporting Web based applications is the
Web Server, Application Server, and Database Server
arrangement. This paper discusses a traffic capacity
testing experience with this server configuration for a
Windows environment using a transaction oriented
load generator instead of a traditional virtual user script
based tool. Both challenges encountered and insights
gained are described.

The software being traffic capacity tested is a new
application where the customer is doing the test
because there is no performance data available from
the vendor. The application is Web based with users
logging on, performing queries of and updates to a
large account database.

This is the initial capacity test of both the application
software and the hardware configuration. Project
scheduling constraints limited the test’s scope to home
page accesses, login events, and query activity.
Follow-on tests are planned which expand functional
coverage to include database updates and an
increased set of queries.

The paper begins with a description of the traffic
generation topology, some system configuration items,
and the transaction traffic mix used. This information is
followed by overall results, details in both graphical and
tabular form, and a list of lessons learned along with
some summary comments.

2. Traffic Generation Environment
Figure 1 shows the layout of the traffic generation
environment including the Traffic Generator, a Cisco®
Packet Switch, an F5® Load Balancer and five target
servers. There are two Web Servers, two Application
Servers, and a single Database Server shown.
Although only one Database Server is depicted, there
is a standby available which has been omitted since it
did not participate in the testing process. The Traffic
Generator is connected directly to the Cisco Packet
Switch, eliminating any network latency.

Figure 1: Traffic Generation Topology

Traffic_100 Traffic_1

Enet

Traffic Generator

Account IDs

Web Server #1

Application Server #1 Application Server #2

Web Server #2

Database Server

Cisco 3750 Switch

F5 Load Balancer

The traffic flow through this environment is as follows.
The Traffic Generator’s Traffic_1 through Traffic_100
processes create independent web requests that

traverse the 100-megabit Ethernet connection on their
way to the Cisco 3750 Switch which hands them off to
the F5 Load Balancer. The Web Server selected by the
load balancer packages and sends the request to the
Application Server who produces an inquiry for the
Database Server. The Database Server formulates an
SQL request, retrieves the required data, and returns it
to the Application Server. This data is forwarded up
through the Web Server, F5 Load Balancer, and Cisco
3750 Switch until it reaches the Traffic Generator
process making the request. This process analyzes the
response to determine if it is correct and records the
transaction response time.

Table 1 lists the configuration characteristics of each
computing system in Figure 1, including the Traffic
Generator. This table contains each system’s name,
description, CPU type, speed, and execution element
count, along with the quantity of RAM and type of
operating system used. The CPU “Execution Element”
column depicts the number of processors displayed by
the Windows Task Manager. The DB Server, for
example, possesses four hyper-threaded processors
resulting in eight “Execution Elements” being displayed
by its Windows Task Manager.

Table 1: System Configuration

Item Name Description Type
Speed
(GHz)

 Execution
Elements Ram (GB)

Operating
System

1 TG Traffic Generator Pentium 4 3.4 2 2 Linux
2 WB1 Web Server Xeon 3.2 4 4 Windows 3000
3 WB2 Web Server Xeon 3.2 4 4 Windows 3000
4 AP1 Application Server Xeon 3.4 4 8 Windows 3000
5 AP2 Application Server Xeon 3.4 4 8 Windows 3000
6 DB Database Server Xeon 3.0 8 3.25 Windows 3000

CPU

The traffic generator, developed by this author, is
transaction based with the one-hundred Figure 1 traffic
processes running the Table 2 traffic mix. As shown,
ten of the traffic processes request the application
home page while the remaining ninety perform queries
with half of the processes exercising Query 5. This
query requests account data by randomizing over
10,000 account IDs. The ninety query users login one
time at the beginning of each traffic run before
repeatedly requesting their assigned URL. This
transaction approach to traffic generation is applicable
because the functionality is implemented with the
connectionless HTTP internet protocol and sessions
are managed at the application level using browser
cookies [JECK04].

Table 2: Traffic Mix – Transaction
Item

Traffic
Processes

Web Page
Description

Web
Action

Login
First

Account
IDs URL

1 10 Home GET No 0 https://home.page.htm
2 10 Query 1 GET Yes 0 https://query1.htm
3 10 Query 2 GET Yes 0 https://query2.htm
4 10 Query 3 GET Yes 0 https://query3.htm
5 10 Query 4 POST Yes 1 https://query4.htm
6 50 Query 5 POST Yes 10,000 https://query5.htm

Total 100

Traffic generators that support connection oriented
protocols usually implement a virtual user front end

and state machine software to maintain session
context between transaction sequences. This virtual
user structure is often implemented for simpler
connectionless situations as well. Table 3 is an
example and lists five Vuser Types, each invoking a
set internet transaction sequence with fixed or
uniformly distributed delay times between transactions.

Table 3: Traffic Mix - Virtual User

Vuser Vuser Vuser Vuser Vuser
Delay Type 1 Type 2 Type 3 Type 4 Type 5 Total

Transaction Seconds 10% 15% 40% 10% 25% 100%
 LOGIN 10 1 1 1 1 1 100%
 Query1 15 1 1 1 75%
 Query2 10 1 1 1 50%
 Query3 20 1 10%
 Query4 15 1 15%
 Query5 20 1 1 50%
 LOGOUT 10 1 1 1 1 1 100%

55 45 55 50 45 50.5Script Time

For a connectionless application, like the one analyzed
in this paper, the virtual user structure may be overkill
and the simpler transaction mechanism a better fit.
Some of the beneficial characteristics of the
transaction tool used here are:

1. It reports transaction request timing statistics
to ensure offered traffic conforms to a “real
world” random arrivals pattern.

2. It is structured to produce a consistent traffic
mix during a capacity study.

3. It includes a set of analysis tools that support
X-Y Plot construction of target server resource
consumption levels as a function of
transaction rate.

An X-Y Plot of traffic rate versus resource utilization
can identify bottlenecks and imbalances for some
resources by graphically determining if they have linear
throughput characteristics. Resource utilizations with
this functional property include CPU Usage, Disk I/O
rates, and Packet rates. X-Y Plots of these counters
are in the detailed analysis, Section 4, and Appendix A.

Determining the number of active users supported
requires additional calculations, but the computations
are a straightforward extrapolation from the transaction
mix already established. For a detailed discussion of
transaction based versus virtual user oriented traffic
generation techniques see [BRAD06].

3. Traffic Capacity - Summary
The test procedure used for this application is to
perform a series of 15 minute runs at increasing levels
of traffic until resource saturation occurs. Traffic is
generated in a random arrivals fashion where all
processes draw their negative-exponentially distributed
delay times from the same mean value during a run.
Arrival patterns, response times, and resource
consumption levels are recorded at each traffic
increment. Server resource consumption statistics are
gathered using a Windows PerfMon logging template

set to sample every 30 seconds. Arrival events and
response time values are recorded by the traffic
generating software. There were nine 15 minute runs
performed in this study before a specific resource
bottleneck was found.

Table 4 contains a summary of the traffic capacity
study results. It shows the maximum traffic rate
achieved by the traffic generator is 4.42 web accesses
per second with a mean response time of 383
milliseconds. There is a small amount of additional
traffic being produced by approximately one dozen
“hands on” users that is not reflected in the 4.42
Trans/sec but contributes to the resource consumption
levels listed.

None of the resource utilization levels shown in Table
4 for CPU, Disk, Enet, or Memory are significant
except for the Database Server’s memory at 657
Pages/sec. The paging rate actually reached an
average of 2,120 Pages/sec for the 3.92 Trans/sec test
run. Since the Database Server only has 3.25 GB of
RAM available, additional memory appears to be
required to eliminate this memory bottleneck. It is
assumed the high paging rate is why the traffic
generator consistently failed login attempts when trying
to run above 4.42 Trans/sec. It is this author’s
experience that any significant sustained paging rate
on a system leads to performance and stability
problems like those mentioned here.

These findings yield a recommendation to increase
Database Server memory to 16 GB of RAM and rerun
the traffic capacity test.

Table 4: Maximum Traffic Summary Stats

Computer Traffic
System Trans/Sec Median Mean 95%

Traffic Gen 4.42 26 383 109

Computer CPU Disk Enet Memory
System % Busy I/Os /Sec Packets/Sec Pages/Sec

Traffic Gen 1% 0 216 0
Web Server #1 0% 1 162 0
Web Server #2 0% 1 155 0
App Server #1 1% 3 25 0
App Server #2 1% 5 208 0

DB Server 10% 290 1039 657

Traffic Rate and Response Time

Computer Resource Consumption Levels

Response Time (milliseconds)

Computer Resources

The response time statistics provided in Table 4 show
the median response time to be an order of magnitude
less than the arithmetic mean (26 ms Versus 383 ms),
indicating a large number of very short response times
are being averaged with a few very long ones. This is
perhaps best illustrated by the response time
distribution bar chart, Figure 2, that shows 3,842 of the
3,979 response times recorded are less than 500 ms

but 99 of the remaining 137 exceed 7 seconds. The
general breakdown of response times is that logins
average around 6 seconds, web pages or cached
account data retrievals take 30 ms, non-cached
account data retrievals consume 60 ms, and the
maximum response time is a 24.035 second login.
These statistics and their associated graphical
representation illustrate the misleading nature of
service level averages within this test environment.

Figure 2: Distribution Of Response Times

Distribution Of Response Times
4.42 Trans/Sec Run (15 minutes = 3979 transactions)

0

1000

2000

3000

4000

5000

Seconds

Fr
eq

ue
nc

y

Count 0 3842 1 2 2 1 7 3 5 4 4 4 1 4 99

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 >7.0

4. Traffic Capacity – Graphical View
The following graphs and supporting tables expand on
the information listed in Table 4 by illustrating the
reaction of the target servers and the traffic generator
to incremental increases in traffic. Figure 3 shows
traffic generator behavior as a function of transactions
per second with Figure 4, Figure 5, and Figure 6
providing this information from a Web Server,
Application Server, and Database Server perspective.
Each of these figures includes response time graphs
from a traffic generator orientation along with CPU
Utilization, Disk I/O rate, Packet rate, and Memory
Page rate plots. The table which follows each graph
contains the data used to produce it along with details
such as packet rates by direction and CPU utilization
separated into total and system percentages.

The following are comments and observations
regarding these graphs and tables:

• All runs reflect 100% successful transactions
with the browser timeout set to 30 seconds.

• All of the graphs are X-Y Plots where resource
consumption is charted as a function of
transaction rate.

• The Figure 3 packet rate is a linear function of
transaction rate and would statistically match
the sum of the packet rates plotted in Figure 4
if the traffic generator was the only traffic
source. Unfortunately, the transaction rate and
mix produced by the “hands on” users is
unknown and although small, alters this
functional relationship.

• Since all traffic generator processes are set up
to operate independently at an overall
constant traffic rate, they should produce
Negative-Exponentially distributed inter-arrival

times. Compliance with this traffic pattern can
be determined by comparing the inter-arrival
time mean to its standard deviation because
these two statistics are equal for Negative-
Exponentially distributed data. The Arrival
Summary Statistics table at the bottom of
Figure 3 lists the mean and standard deviation
of the inter-arrival times for 4.42 Trans/sec as
225 ms and 229 ms indicating near equality
and conformance to the Negative-Exponential.
For a discussion of this statistical property and
its traffic generation significance see
[BRAD04] and [BRAD06].

• The high p95 (95th percentile) response time
values at low transaction rates are caused by
the large login response times. This happens
because each process performs one login per
run and logins are a larger percentage of the
traffic for low volume runs than for high
volume runs. An analysis is planned to identify
why login response times are so long, even
when the traffic rate is low.

• CPU utilization, Disk I/O rates, and Packet
rates are not currently bottlenecks for any of
the servers analyzed. Memory Pages/Sec for
the Database Server shown in Figure 6 is the
obvious transaction rate constraint.

• The packet rates contained in Figure 4 for
WB1 and WB2 are approximately the same,
indicating that the F5 Load Balancer is
working correctly.

• The inconsistent Disk I/O and Packet rate
Versus Transaction rate pattern for the
Application Servers, Figure 5, seems to
indicate the work isn’t well balanced across
AP1 and AP2. This imbalance will be closely
monitored as testing progresses.

• The erratic Disk I/O rate and Packet rate
Versus Transaction rate pattern for the
Database Server, Figure 6, likely results from
that server’s memory constraint, but to
eliminate speculation, memory should be
added and a follow-up test conducted.

• Traffic generator resource consumption data
and target system response time information
were collected and analyzed using a
combination of standard operating system
tools and tools developed by this author.

• A pie chart showing the proportion of CPU
time consumed by the key processes is
usually produced for each server but CPU
utilization was too low when the bottleneck
was reached to permit construction of this
chart. Appendix A contains a process
proportions pie chart example to show how
one is developed and interpreted.

Figure 3: Traffic Generator (TG)
`

Percent CPU Utilization

0

20

40

60

80

100

0 1 2 3 4 5 Trans/Sec

pe
rc

en
t TG

Total Disk I/Os / sec

0
1
2
3
4
5
6

0 1 2 3 4 5 Trans/Sec

I/O
s

/ s
ec TG

Total Packets / sec

0

50

100

150

200

250

0 1 2 3 4 5 Trans/Sec

P
ac

ke
ts

 /
se

c

TG

Traffic Generator Response Time (milliseconds)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 Trans/Sec

m
s

mean
p95

Memory Pages / sec

0

1

2

3

4

5

0 1 2 3 4 5 Trans/Sec

P
ag

es
 /

se
c

TG

TG: Response Time, CPU, Disk I/O, Packets, Memory

run tps rt mean rt p95 cpu sys cpu tot dsk r/s dsk rw/s pkt r/s pkt rs/s mem pg/s
1 0.00 315 86 0 0 0 0 0 0 0
2 1.00 372 3133 0 0 0 0 29 48 0
3 1.15 315 2778 0 0 0 0 32 53 0
4 1.23 398 3269 0 0 0 0 35 58 0
5 1.66 701 4908 0 1 0 0 47 78 0
6 1.98 356 2940 0 1 0 0 57 95 0
7 2.44 351 112 0 1 0 0 71 118 0
8 3.21 437 107 0 1 0 0 96 159 0
9 3.92 462 86 0 1 0 0 117 195 0

10 4.42 383 109 0 1 0 0 130 216 0
Arrival Summary Statistics

run pass n tps median mean sdev p90 p95 min max
1 1000 900 1.00 731 998 974 2153 2813 0 8134
2 900 1034 1.15 596 866 896 2101 2668 0 7587
3 800 1104 1.23 573 813 799 1886 2386 0 5586
4 600 1489 1.66 430 602 601 1416 1855 0 6029
5 500 1779 1.98 366 505 507 1173 1470 0 4727
6 400 2193 2.44 286 409 417 935 1216 0 3627
7 300 2889 3.21 220 310 299 703 940 0 2107
8 250 3531 3.92 174 254 252 584 770 0 1767
9 220 3978 4.42 155 225 229 524 692 0 1899

Response Time Summary Statistics
run pass n tps median mean sdev p90 p95 min max

1 1000 901 1.00 32 372 1053 210 3133 9 6197
2 900 1035 1.15 26 315 960 99 2778 9 6982
3 800 1105 1.23 50 398 1441 86 3269 9 26264
4 600 1490 1.66 24 701 2904 76 4908 8 27842
5 500 1780 1.98 27 356 1547 69 2940 9 18602
6 400 2194 2.44 23 351 1716 59 112 8 19408
7 300 2890 3.21 25 437 2213 53 107 8 24261
8 250 3532 3.92 23 462 2502 51 86 8 28257
9 220 3979 4.42 26 383 2117 57 109 8 24035

Figure 4: Web Servers (WB1 & WB2)

Percent CPU Utilization

0

20

40

60

80

100

0 1 2 3 4 5 Trans/Sec

pe
rc

en
t WB1

WB2

Total Disk I/Os / sec

0
1
2
3
4
5
6

0 1 2 3 4 5 Trans/Sec

I/O
s

/ s
ec

WB1
WB2

Total Packets / sec

0

50

100

150

200

250

0 1 2 3 4 5 Trans/Sec

P
ac

ke
ts

 /
se

c WB1
WB2

Traffic Generator Response Time (milliseconds)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 Trans/Sec

m
s

mean
p95

Memory Pages / sec

0

1

2

3

4

5

0 1 2 3 4 5 Trans/Sec

P
ag

es
 /

se
c WB1

WB2

WB1: CPU, Disk I/O, Packets, Memory

run tps rt mean rt p95 cpu sys cpu tot dsk r/s dsk rw/s pkt r/s pkt rs/s mem pg/s
1 0.00 315 86 0 0 0 0 0 0 0
2 1.00 372 3133 0 0 0 1 50 81 0
3 1.15 315 2778 0 0 0 1 48 81 0
4 1.23 398 3269 0 0 0 1 36 60 0
5 1.66 701 4908 0 0 0 1 38 63 0
6 1.98 356 2940 0 0 0 1 54 92 0
7 2.44 351 112 0 0 0 1 63 107 0
8 3.21 437 107 0 0 0 1 73 121 0
9 3.92 462 86 0 0 0 1 90 150 0

10 4.42 383 109 0 0 0 1 97 162 0
WB2: CPU, Disk I/O, Packets, Memory

run tps rt mean rt p95 cpu sys cpu tot dsk r/s dsk_rw/s pkt r/s pkt rs/s mem pg/s
1 0.00 315 86 0 0 0 0 0 0 0
2 1.00 372 3133 0 0 0 1 44 72 0
3 1.15 315 2778 0 0 0 1 52 86 0
4 1.23 398 3269 0 0 0 1 36 60 0
5 1.66 701 4908 0 0 0 1 33 56 0
6 1.98 356 2940 0 0 0 1 51 88 0
7 2.44 351 112 0 0 0 1 51 84 0
8 3.21 437 107 0 0 0 2 70 116 0
9 3.92 462 86 0 0 0 1 83 138 0

10 4.42 383 109 0 0 0 1 93 155 0

Figure 5: APP Servers (AP1 & AP2)

Percent CPU Utilization

0

20

40

60

80

100

0 1 2 3 4 5 Trans/Sec

pe
rc

en
t AP1

AP2

Total Disk I/Os / sec

0

1

2

3

4

5

6

0 1 2 3 4 5 Trans/Sec
I/O

s
/ s

ec

AP1
AP2

Total Packets / sec

0

50

100

150

200

250

0 1 2 3 4 5 Trans/Sec

P
ac

ke
ts

 /
se

c AP1
AP2

Traffic Generator Response Time (milliseconds)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 Trans/Sec

m
s

mean
p95

Memory Pages / sec

0

1

2

3

4

5

0 1 2 3 4 5 Trans/Sec

Pa
ge

s
/ s

ec AP1
AP2

AP1: CPU, Disk I/O, Packets, Memory

run tps rt mean rt p95 cpu sys cpu tot dsk r/s dsk rw/s pkt r/s pkt rs/s mem pg/s
1 0.00 315 86 0 0 0 0 0 0 0
2 1.00 372 3133 1 1 0 4 30 51 0
3 1.15 315 2778 1 1 0 4 21 37 0
4 1.23 398 3269 1 2 0 4 103 194 0
5 1.66 701 4908 1 2 0 5 47 80 0
6 1.98 356 2940 1 1 0 4 15 27 0
7 2.44 351 112 1 2 0 5 68 116 0
8 3.21 437 107 1 1 0 3 14 23 0
9 3.92 462 86 2 3 0 6 110 186 0

10 4.42 383 109 1 1 0 3 16 25 0
AP2: CPU, Disk I/O, Packets, Memory

run tps rt mean rt p95 cpu sys cpu tot dsk r/s dsk rw/s pkt r/s pkt rs/s mem pg/s
1 0.00 315 86 0 0 0 0 0 0 0
2 1.00 372 3133 1 1 0 2 17 29 0
3 1.15 315 2778 1 1 0 3 51 86 0
4 1.23 398 3269 1 1 0 2 15 27 0
5 1.66 701 4908 1 1 0 2 4 7 0
6 1.98 356 2940 1 2 0 4 53 92 0
7 2.44 351 112 1 1 0 2 8 14 0
8 3.21 437 107 1 2 0 4 81 140 0
9 3.92 462 86 1 1 0 2 9 15 0

10 4.42 383 109 1 3 0 5 120 208 0

Figure 6: Database Server (DB)

Percent CPU Utilization

0

20

40

60

80

100

0 1 2 3 4 5 Trans/Sec

pe
rc

en
t DB

Total Disk I/Os / sec

0

200

400

600

800

1000

0 1 2 3 4 5 Trans/Sec

I/O
s

/ s
ec DB

Total Packets / sec

0

200

400

600

800

1000

1200

0 1 2 3 4 5 Trans/Sec

P
ac

ke
ts

 /
se

c

DB

Traffic Generator Response Time (milliseconds)

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 Trans/Sec

m
s

mean
p95

Memory Pages / sec

0

500

1000

1500

2000

2500

0 1 2 3 4 5 Trans/Sec

Pa
ge

s
/ s

ec DB

DB: CPU, Disk I/O, Packets, Memory

run tps rt mean rt p95 cpu sys cpu tot dsk r/s dsk rw/s pkt r/s pkt rs/s mem pg/s

1 0.00 315 86 0 0 0 0 0 0 0
2 1.00 372 3133 1 8 80 142 211 481 12
3 1.15 315 2778 1 9 4 13 49 106 8
4 1.23 398 3269 2 15 426 657 312 743 268
5 1.66 701 4908 2 9 34 42 273 688 296
6 1.98 356 2940 1 10 186 298 291 689 9
7 2.44 351 112 4 10 79 420 285 571 898
8 3.21 437 107 4 10 290 875 155 309 695
9 3.92 462 86 3 11 200 216 407 812 2120

10 4.42 383 109 2 10 133 290 414 1039 657

5. Lessons Learned
The limited testing time and simplified traffic mix
provided many challenges to producing a high quality
traffic capacity study but these circumstances
presented an opportunity to learn some valuable
lessons and gain important insights. The following are
some of these insights.

1. This experience shows that a small initial test
can isolate major system bottlenecks and help
focus tuning efforts. There is a tendency to

perform one large traffic capacity test of a new
application just prior to release into production,
but many times the most effective approach is
to test incrementally and increase test
complexity gradually. To that end twenty new
queries and several database updates have
been identified, planned, and in some cases
set up for the next round of testing.

2. Limit traffic generation sources to those whose
traffic mix is manageable and whose data is
quantifiable. The inclusion of the “hands on”
users may have added a degree of realism to
this test but it introduced transactions of
unknown type and volume, negatively
impacted the quality of information contained
in the X-Y Plots produced.

3. Compare server configuration information with
system specifications before testing begins.
This initial round of testing could have focused
on the next bottleneck or imbalance if that step
had been taken because the Database Server
specification called for 16 GB of RAM but only
3.25 GB were configured.

4. Perform initial capacity tests connected
directly to the server complex, e.g. Figure 1.
This step allows a balanced and tuned target
environment to be established before network
connection complexities are introduced.
During testing, the “hands on” users
complained the network was slow but the
traffic generator isolated the source of the long
latency to the server complex because it did
not have an external network connection.

6. Summary
A common server configuration that has emerged for
supporting Web based applications is the Web Server,
Application Server, and Database Server arrangement.
This paper discusses a specific traffic capacity testing
experience with this server combination for a Windows
environment using a transaction oriented load
generator instead of a traditional virtual user script
based tool.

The paper summarizes the initial traffic capacity testing
of a new application and includes the following items
as part of the analysis performed and results obtained:

• A Traffic Generation Topology Diagram,
Figure 1, showing the major test components
and the topological relationship that exists
between the traffic generator and its target
resources.

• A System Configuration Table, Table 1,
containing CPU, Memory, and Operating
System specifics for the traffic generator as
well as the target servers.

• A Traffic Mix Table, Table 2, which identifies
the transactions requested along with their
type, frequency, and complexity.

• A Maximum Traffic Summary Stats Table,
Table 4, that lists maximum transaction rate
achieved, resource consumption levels
attained, and response time service levels
observed.

• A Distribution of Response Times Graph,
Figure 2, used to describe response time
diversity.

• Traffic Generator Resource Consumption and
Response Time Service Level graphs with
associated tables, Figure 3. The graphs are X-
Y Plots of resource consumption as a function
of transaction rate and the tables contain
arrival pattern statistics along with the data
used to construct the graphs.

• A set of Web Server (Figure 4), Application
Server (Figure 5), and Database Server
(Figure 6) Resource Consumption graphs and
tables.

As testing progresses and bottlenecks are removed,
results reports will include:

• A CPU Utilization Process Proportion Pie
Chart.

• An estimate of users supported.

This test identified a memory bottleneck in the
Database Server leading to a recommendation that its
memory be increased to 16 GB of RAM. Subsequent
traffic capacity tests will either isolate more bottlenecks
or determine that the system is balanced, tuned, and
ready for production. Production resource consumption
data will be correlated with the test data gathered and
used for capacity projection update purposes.

7. References
[ALLE78] A.O. Allen, “Probability, Statistics, And
Queueing Theory”, Academic Press, Inc., Orlando,
Florida, (1978).

[BRAD04], J.F.Brady, “Traffic Generation Concepts –
Random Arrivals”, www.perfdynamics.com, Classes,
Supplements. (2004).

[BRAD06], J.F.Brady, “Traffic Generation and
Unix/Linux System Traffic Capacity Analysis”, Journal
of Computer Resource Management, CMG Journal
#117:12-20, (Spring 2006).

[GUN00] N.J. Gunther, “The Practical Performance
Analyst”, iUniverse Press, Lincoln, Nebraska, 2nd
edition, (2000).

[JECK04] Mario Jeckle and Erik Wilde, “Identical
Principles, Higher Layers: Modeling Web Services as
Protocol Stack”
www.idealliance.org/papers/dx_xmle04/papers/03-
05-04/03-05-04.pdf , Proceedings by deepX Ltd,
(2004).

[KLEI75] L. Kleinrock, “Queueing Systems Volume 1
and 2”, John Wiley & Sons, New York, N.Y., (1975).

8. Trademarks
Windows is a registered trademark of Microsoft
Corporation in the U.S. and certain other countries.

Cisco is a registered trademark of Cisco Systems
Corporation in the U.S. and certain other countries.

F5 is a registered trademark of F5 Networks
Corporation in the U.S. and certain other countries.

Appendix A

Introduction
The purpose of this appendix is to provide a brief
example of transaction based traffic generation and
analysis using a target server which, unlike the servers
in this paper, achieves high resource utilization levels.
The example contains traffic generator output from one
of the runs that produced data for both the set of X-Y
Plots shown and the CPU utilization process level pie
chart included.

Traffic Generator
Figure A.1 is an example run screen from the traffic
generator used to produce the results contained in this
paper. This particular example depicts a twelve minute
run where good, bad, and late response statistics are
reported every 100 seconds for both GET and POST
Web queries. There are 50 GET and 50 POST queries
producing requests randomly at an aggregate rate of a
little over 22 transactions per second. Some late
events are being recorded at this transaction rate for
the three second threshold specified.

Figure A.1 Traffic Generator Run
Linux Sat May 6 13:53:51 2006, 50 GET and 50 POST source(s), 3000 ms late
 ./web_traffic -t -p 0085 -i 100 -s 720 3789 perf_measure_100

Time sent !recv good bad late good bad late
13:53:51 2258 0 1126 0 24 1132 0 17
13:55:31 2286 0 1147 0 15 1139 0 13
13:57:11 2204 0 1142 0 12 1062 0 17
13:58:51 2239 0 1098 0 21 1141 0 9
14:00:31 2173 0 1071 0 25 1102 0 13
14:02:11 2249 0 1128 0 23 1121 0 15
14:03:51 2334 0 1180 0 12 1154 0 14

Total 15743 0 7892 0 132 7851 0 98

Caught a SIGALRM signal -- shutting down

Sat May 6 14:04:26 2006

-------------GET------------- ------------POST------------

X-Y Plots
Often the best way to show a system’s capacity
characteristics is to draw a picture of resource
consumption levels and response time service levels
as a function of incremental increases in traffic volume.
The X-Y Plots and associated data table in Figure A.2
are an example of such a graphical illustration. When
the transaction mix is held constant and traffic is added
incrementally, as is done in Figure A.2, certain
resource consumption statistics tend to increase
proportional to increases in traffic volume unless there
is a system imbalance or bottleneck. The basic idea is
that if the workload is consistent, and doubles, the
resource utilization level also doubles. The three most
important resources to consider with this traffic
congestion characteristic are CPUs, Disks, and Enet
communications devices.

Figure A.2: Traffic Capacity – X-Y Plots

CPU Utilization

0

20

40

60

80

100

0 5 10 15 20 25 Trans/Sec

pe
rc

en
t total

Disk I/Os

0

20

40

60

80

100

120

0 5 10 15 20 25 Trans/Sec

I/O
s

/ S
ec total

Packets

0

200

400
600

800

1000

1200

0 5 10 15 20 25 Trans/Sec

P
ac

ke
ts

 /
Se

c

total

Response Time (milliseconds)

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 Trans/Sec

m
s

mean
p95

Arrival, Response Time, CPU, Disk I/O and Packets

run tps arr mean arr sdev rt mean rt p95 cpu tot dsk rw/s pkt rs/s
1 0.00 0 0 88 253 0 0 0
2 2.20 453 457 88 253 8 11 107
3 6.56 151 157 116 343 24 26 328
4 9.78 101 99 150 434 37 35 473
5 14.78 67 67 203 603 55 48 698
6 17.04 58 58 242 723 62 55 794
7 18.58 53 53 291 883 68 62 875
8 21.02 47 47 464 1383 76 70 996
9 22.45 44 44 712 2143 80 71 1055

The CPU % Utilization, Disk I/O rate, and Enet Packet
rate graphs in Figure A.2 exemplify throughput
proportionality since consumption levels for all of them
are a linear function of traffic rate during the eight
traffic runs performed. It appears from this graph that
the system is approaching a CPU limitation at around
80% Utilization because both the mean and p95
response times are increasing sharply. Disk and Enet
are unlikely to be causing this service level degradation
since their traffic rates are both below normal
saturation levels and their X-Y Plots are linear to the
end.

The traffic generator output in Figure A.1 represents
the last observation in the Figure A.2 set of X-Y Plots
when CPU Utilization is 80% and the p95 response
time is 2.143 seconds.

There are some system resources, like memory, where
throughput proportioning does not work. This is
because memory allocation isn’t based on transaction
rate but on number of running processes and
associated active threads. As shown in Figure 6, traffic
volume impacts paging activity, but not in a
proportional way.

Process Proportions
The Figure A.3 pie chart and associated table expand
upon the Figure A.2 CPU Utilization Graph by
indicating which processes use CPU time and to what
degree. This graph is created by proportioning the
CPU time recorded by the Windows PerfMon templates
during the last four traffic runs. It is particularly helpful
to software developers for focusing their tuning efforts
on processes which consume the most CPU time.
There is little payoff improving the performance of a
process which uses 1% of the CPU by 50% but such a
performance improvement on a process that uses 35%
is significant.

Figure A.3: Process Proportions - Pie Chart
Process Proportions

process_5
2%

process_3
5%

process_4
1%

process_1
35%

process_2
34%

process_7
10%

process_6
13%

process_1
process_2
process_3
process_4
process_5
process_6
process_7

Name Run 6 Run 7 Run 8 Run 9 Total Percent

process_1 156 172 192 202 722 35%
process_2 152 167 186 196 700 34%
process_3 23 26 29 30 108 5%
process_4 5 5 6 6 23 1%
process_5 7 7 8 9 31 2%
process_6 58 63 71 75 266 13%
process_7 45 50 56 58 209 10%

total 446 490 547 576 2059 100%

Processor Seconds In 720 Second Run

